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ABSTRACT

Since the emergence of Ethereum, blockchain-based decentralized

applications (DApps) have become increasingly popular and im-

portant. To balance the security, performance, and costs, a DApp

typically consists of two layers: an on-chain layer to execute trans-

actions and store crucial data on the blockchain and an off-chain

layer to interact with users. A DApp needs to synchronize its off-

chain layer with the on-chain layer proactively. Otherwise, the

inconsistent data in the off-chain layer could mislead users and

cause undesirable consequences, e.g., loss of transaction fees. How-

ever, transactions sent to the blockchain are not guaranteed to be

executed and could even be reversed after execution due to chain

reorganization. Such non-determinism in the transaction execution

is unique to blockchain. DApp developers may fail to perform the

on-chain-off-chain synchronization accurately due to their lack of

familiarity with the complex transaction lifecycle.

In this work, we investigate the challenges of synchronizing

on-chain and off-chain data in Ethereum-based DApps. We present

two types of bugs that could result in inconsistencies between

the on-chain and off-chain layers. To help detect such on-chain-

off-chain synchronization bugs, we introduce a state transition

model to guide the testing of DApps and propose two effective

oracles to facilitate the automatic identification of bugs. We build

the first testing framework, ÐArcher , to detect on-chain-off-chain

synchronization bugs in DApps. We have evaluated ÐArcher on
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11 popular real-world DApps. ÐArcher achieves high precision

(99.3%), recall (87.6%), and accuracy (89.4%) in bug detection and

significantly outperforms the baseline methods. It has found 15

real bugs in the 11 DApps. So far, six of the 15 bugs have been

confirmed by the developers, and three have been fixed. These

promising results demonstrate the usefulness of ÐArcher .
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1 INTRODUCTION

Decentralized Applications (DApps) are software applications run-

ning on a decentralized network like blockchain. Since the emer-

gence of Ethereum [11], a blockchain platform that supports Turing-

complete smart contracts, blockchain-based DApps have drawn

much attention from both academia and industry. As of April

2021, on Ethereum, there are over 2.7 thousand DApps and 70 thou-

sand active DApp users, issuing over 170 thousand transactions per

day [44].

As shown in Fig. 1, DApps are typically deployed as web ap-

plications, consisting of two layers: on-chain and off-chain. The

former comprises a set of smart contracts that store and update
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Figure 1: The Architecture of A Typical DApp

crucial data on the blockchain.1 The latter contains a user-friendly

front-end client and an optional centralized service outside the

blockchain [56]. Take Giveth [20], a popular DApp for charita-

ble donation on Ethereum, as an example. It comprises a set of

on-chain smart contracts and an off-chain front end backed by a

centralized cache server. To avoid frequent communication with the

blockchain and facilitate users’ queries, the off-chain layer usually

stores processed or analyzed results of certain important on-chain

data. Therefore, a DApp’s state is composed of an on-chain state and

an off-chain state, referring to the data stored at the on-chain (e.g.,

data in Giveth’s smart contracts) and the off-chain (e.g., database

of Giveth’s cache server) layers, respectively. The on-chain and

off-chain states of a DApp are not necessarily the same. DApps usu-

ally maintain a mapping between the on-chain and off-chain states.

Since blockchain is autonomous and the on-chain state may change

out of the control of DApps, DApps need to proactively synchronize

their off-chain states and keep them consistent with the on-chain

states. We call such a process on-chain-off-chain synchronization.

On-chain-off-chain synchronization can be complicated. Changes

are made to the on-chain state of a DApp by sending transac-

tions to the blockchain. However, transaction executions are non-

deterministic due to the decentralized nature of blockchain [62]. On

the one hand, transactions sent to the blockchain are not necessarily

executed and could be dropped silently even after being acknowl-

edged by the miners [10]. On the other hand, executed transactions

could be reversed as a result of chain reorganization [27]. Such

non-determinism is unique to blockchains and does not exist in

conventional centralized services or distributed systems. If the

non-determinism is not carefully considered and dealt with in the

development of a DApp, inconsistencies between its off-chain and

on-chain states may arise when the DApp is running. Such incon-

sistencies can cause catastrophic consequences. It is because users

typically take actions (e.g., buying and selling) according to the

off-chain state shown at the front-end client of a DApp. Stale data

at the off-chain layer can mislead users into taking wrong actions

that result in irreversible changes on the blockchain or financial

losses. For example, in a DApp like Giveth, if a donation transaction

is reversed on the blockchain while the DApp’s off-chain layer is

unaware of the reverse and does not update the donation status,

subsequent transactions to withdraw the donation will fail, causing

the loss of transaction fees.2 We refer to such bugs that stem from

non-deterministic transaction execution and induce inconsistencies

between the on-chain and off-chain states as on-chain-off-chain

synchronization bugs.

1To save transaction costs, blockchain typically only stores crucial data [58].
2Ethereum users need to pay fees for each transaction, no matter the transaction
succeeds or not [17].

It is non-trivial to avoid on-chain-off-chain synchronization bugs

even if developers have considered them in the development of

DApps. Giveth developers have written more than 600 lines of

code3 to track the lifecycle of all transactions and keep the consis-

tency between the on-chain and the off-chain states. Augur [30],

another very popular DApp, implements a delicate rollback table4

to revert off-chain states when the transactions are reversed on

the blockchain. In spite of the efforts that developers take, we still

find on-chain-off-chain synchronization bugs in those DApps, as

discussed in Section 6.5.

While several bug detection techniques have been proposed

to assure the quality of DApps, they are either general tools for

specifying test cases and assertions [59] or focus only on the on-

chain layer by finding defects in smart contracts [22, 25, 32, 39, 54].

In other words, none of them can effectively pinpoint on-chain-

off-chain synchronization bugs in DApps. This motivates us to

investigate the on-chain-off-chain synchronization bugs and devise

testing techniques to detect such bugs.

On-chain-off-chain synchronization bugs could occur in DApps

on all blockchain platforms. Due to the impact of the Ethereum

blockchain, our work focuses on Ethereum-based DApps. To ease

presentation, we may simply refer to Ethereum-based DApps as

DApps in the following.

There are two major challenges in detecting on-chain-off-chain

synchronization bugs in DApps. First, we need to expose the non-

determinism of the transaction executions, which is not considered

by existing testing environments, so that on-chain-off-chain syn-

chronization bugs can be better revealed. Second, the mapping

between on-chain and off-chain states is usually unavailable and

hard to specify. Hence, it is impractical to compare on-chain and

off-chain states to check consistency directly. We need a decidable

criterion to mechanically judge the consistency, thus identifying the

existence of the bugs. To address the first challenge, we study the

causes of the synchronization bugs and propose a state transition

model for the lifecycle of transactions on the Ethereum blockchain.

Guided by the model, we are able to trigger the scenarios where

transactions are dropped or reversed to test DApps. To address

the second challenge, we propose two test oracles based on the

following key observation: the off-chain state of a DApp should

stay the same if the corresponding on-chain state is unchanged, and

a violation of this requirement would indicate the existence of bugs

in the state synchronization process. With these oracles, we are

able to define assertions only on the off-chain states to effectively

reveal on-chain-off-chain synchronization bugs in DApps, with-

out knowing the mapping between the on-chain and the off-chain

states.

We implement our approach as a DApp testing framework, called

ÐArcher , and evaluate it using 11 popular real-world DApps. These

DApps vary in scale, ranging from hundreds to tens of thousands

of lines of code, and have received at least 100 stars on GitHub. Our

experiment results show that ÐArcher is effective. It is able to detect

on-chain-off-chain synchronization bugs in all of the DApp subjects.

We manually check warnings reported by ÐArcher , group the ones

with the same root cause, and submit 15 issue reports on GitHub.

3https://github.com/Giveth/feathers-giveth/blob/d51d585/src/blockchain/watcher.js
4https://github.com/AugurProject/augur/blob/85b570f/packages/augur-
sdk/src/state/db/RollbackTable.ts
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So far, bugs in six issue reports have been confirmed by developers.

These bugs can cause transaction failures, continuous errors being

prompted in the DApp client UI, or incorrect information being

displayed to users.

This paper makes three major contributions:

• To the best of our knowledge, this is the first study that examines

the bugs in the on-chain-off-chain synchronization process of

DApps. We formulate the problem with a state transition model

of the transaction lifecycles. Using the model, we present the

challenges in on-chain-off-chain synchronization and the causes

of the synchronization bugs.

• We propose two test oracles that are able to effectively identify

inconsistencies between on-chain and off-chain states without

knowing the mapping between them. Based on the transition

model and the proposed oracles, a testing framework, ÐArcher ,

is built to detect on-chain-off-chain synchronization bugs in

Ethereum-based DApps. ÐArcher is open-source on GitHub5.

• We evaluate ÐArcher on 11 real-world DApps and conclude

that ÐArcher can detect bugs with high precision (99.3%), re-

call (87.6%), and accuracy (89.4%). We submit 15 issue reports to

developers, and six have been confirmed.

2 BACKGROUND

2.1 Two-Layer Architecture of DApps

In Section 1, we have briefly introduced the architecture of DApps.

This section further explains several important concepts in detail.

2.1.1 On-Chain and Off-Chain Layers. The two-layer architecture

of DApps is to balance security, maintainability, performance, and

costs [56]. Blockchain (e.g., Ethereum [17]), as a decentralized

ledger, offers a highly secure data store with programmable smart

contracts in the on-chain layer. However, storing data and compu-

tations on blockchain incurs a high latency and requires paying a

non-negligible transaction fee. Besides, interacting with blockchain

by sending transactions and interpreting logs in low-level bytecode

is also not friendly for ordinary users. The off-chain layer is meant

to improve the performance and reduce costs using a user-friendly

front-end and centralized services (optional) without sacrificing

too much in the way of security [55].

2.1.2 On-Chain and Off-Chain States. As mentioned in Section 1,

DApps execute key logics implemented in smart contracts and store

crucial data on the blockchain as the on-chain state. Users usually

take actions in the off-chain layer according to the results of some

calculations involving on-chain data. It is expensive to store such

intermediate results back onto the blockchain. It is also inefficient

to query the on-chain state to perform the calculations repetitively.

As a result, DApps usually store a simplified view of their on-chain

state and some relevant calculation results at the off-chain layer

as the off-chain state. Note that the off-chain layer may also store

other data irrelevant to the on-chain state. In this paper, we do not

include such data in our definition of the off-chain state.

2.1.3 On-Chain-Off-Chain Synchronization. DApp users send trans-

actions to the blockchain via the off-chain layer to make changes

5https://github.com/Troublor/darcher

to the on-chain state. During the lifecycle of each transaction,

blockchain emits various events. DApps can monitor such events

to keep their off-chain state synchronized with the corresponding

on-chain state. This process is easy to implement if the transactions

are executed deterministically on a centralized service or database.

However, this is not the case on the blockchain, as will be explained

in the next subsection.

2.2 Non-deterministic Transaction Execution

Transactions sent to the blockchain will be broadcast to miners

throughout the network. Conceptually, miners on a blockchain

collectively maintain a pool of transactions awaiting execution. A

transaction is added to the transaction pool when it is received

by a miner. A transaction is executed non-deterministically on

the blockchain from two aspects. First, a transaction may not be

executed after it has been sent by DApp users. Second, an executed

transaction can be reversed from the transaction history. In the

following, we explain how such non-determinism arises.

2.2.1 Sent Transactions May Not Be Executed. A miner can select

which transactions to execute from the pool when a new block

has been mined. It is possible that a transaction is not selected and

keeps staying in the pool. An old transaction in the pool can be

invalidated by a new one with the same nonce, which is the index

of a transaction sent from the user [10, 17]. The invalidated transac-

tions will be dropped and never be executed on the blockchain. In

addition, miners can silently drop transactions for various reasons

(e.g., due to the size limit of the transaction pool).

2.2.2 Executed Transactions May Be Reversed. A newly mined

block is not necessarily added to the blockchain. When multiple

miners concurrently mine a new block [62], the blockchain will fork

multiple chains of blocks. To resolve this problem, the blockchain

will validate only the longest chain and invalidate the others. The

process is known as chain reorganization [38]. If the execution of

a transaction is recorded by a block in an invalidated chain, the

transaction will be reversed and put back to the pool. In practice,

chain reorganization can hardly affect blocks with a sufficient num-

ber of confirmations, which are the succeeding blocks on the same

chain [18].

Such non-determinism in transaction execution complicates the

interactions and synchronization between the on-chain and off-

chain layers of a DApp. Bugs can arise if the DApp handles the

non-determinism inappropriately. In Section 3, we will give a real-

world example of such bugs.

3 MOTIVATING EXAMPLE

In this section, we present a code snippet adapted from Giveth[20],

to illustrate the on-chain-off-chain synchronization in DApps, and

an on-chain-off-chain synchronization bug [21].

Listing 1 shows a code snippet for the łwithdraw donationž func-

tionality in the front-end client of Giveth, which allows users to

withdraw the donations they receive. The front-end client of Giveth

uses web3.js [49], an official Ethereum JavaScript library, to send a

transaction to an underlying smart contract łliquidPledgingž and

call its łwithdrawž function, as seen in line 3. The client registers a

callback for handling the łtransactionHashž event, which occurs
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1 function withdrawDonation () { // withdraw donation from one crowdfunding project
2 contract.liquidPledging
3 .withdraw (... arguments) // send withdraw transaction to smart contract

4 .once('transactionHash ', hash => { // function called when transaction is sent
5 let txHash = hash; //

6 updateExistingDonation(existingDonation , amount); // update existing donation after
withdraw

7

8 const withdrawRecord = {...}; // create a new withdraw record

9 feathersClient

10 .service('/donations ')
11 .create(withdrawRecord) // save the withdraw record in the centralized database

12 .catch(onError);
13 });
14 }

Listing 1: Withdraw Donation Functionality in the DApp Giveth

when the transaction is added to the blockchain transaction pool

(line 4). Since the transaction is to modify the on-chain state con-

cerning the donation amount, the off-chain state is also updated

accordingly (line 6). After the update, a corresponding withdraw

record is created and stored in an off-chain centralized database

(line 11).

The code in Listing 1 may not work correctly because the łwith-

draw donationž transaction may remain in the transaction pool

indefinitely or be dropped without execution. The occurrence of

the łtransactionHashž event only signifies that a transaction has

been added to the transaction pool rather than the execution of

the transaction. Even if the transaction has been executed, it can

still be reversed later. Therefore, it is possible that the off-chain

state is updated while the on-chain state remains unchanged (i.e.,

when the withdraw transaction is dropped or reversed). Such state

inconsistencies can lead to many undesirable consequences. For

example, let us consider the following scenario. A user of Giveth

sends a łwithdraw donationž transaction to the smart contract,

but the transaction is dropped by the blockchain. However, due to

the bug, the Giveth client incorrectly shows that the donation has

been withdrawn. The user may decide to donate the withdrawn

cryptocurrency to another community. In such a scenario, the new

donation transaction may fail, causing unnecessary loss of transac-

tion fees and poor user experience.

It is difficult to expose on-chain-off-chain synchronization bugs

using existing DApp testing tools. For example, Ganache [8] is

one of the most commonly used blockchain environments for test-

ing Ethereum-based DApps. Like testing on centralized databases,

transactions sent to Ganache blockchain are executed immediately.

Therefore, when testing Giveth using Ganache, the on-chain and

off-chain states are always consistent. The bug mentioned above

can never be detected.

To tackle this problem,we propose tomodel the non-determinism

in transaction execution using the transaction lifecycle. Our ap-

proach simulates the non-deterministic transaction execution pro-

cess and drives DApps to traverse each transaction’s lifecycle sys-

tematically. We also propose effective test oracles to detect incon-

sistencies between the on-chain and off-chain states automatically.

4 METHODOLOGY

This section first proposes a state transition model to capture the

lifecycle of transactions on the Ethereum blockchain. We then

discuss the challenges in on-chain-off-chain synchronization and

identify two types of synchronization bugs that may arise in DApps.

After that, we propose our framework, ÐArcher , to detect on-chain-

off-chain synchronization bugs in DApps.

4.1 Transaction Lifecycle

To detect on-chain-off-chain synchronization bugs, we model the

non-determinism in the lifecycle of a transaction on the Ethereum

blockchain using a state transition model as shown in Fig. 2. A

Created Pending Executed Finalized

Dropped Reversed

Figure 2: State TransitionModel of the EthereumTransaction

Lifecycle

transaction starts its lifecycle at the Created state by constructing

the required arguments at the DApp’s off-chain layer. After that,

the transaction is sent to the blockchain and transits to the Pending

state, meaning that the transaction is added to the transaction pool

awaiting execution on the blockchain. A transaction may remain

in the Pending state indefinitely as miners are free to select more

profitable transactions for execution.

A Pending transaction can be dropped and transit to the Dropped

state in two cases. First, users may send a duplicated transaction to

override the previous transaction or offer a higher fee to increase

the chance of execution [33]. Second, the transactionmay be deleted

silently by miners due to the capacity limit of miners’ transaction

pool or malicious behaviors of miners. In the latter case, the DApp

is not informed that a transaction has been dropped. It is also hard

for the DApp to proactively check whether a transaction is dropped

on the blockchain or not.

A Pending transaction transits to the Executed state when it

is executed and included in a block. As discussed in Section 2,

an executed transaction can be reversed when the blockchain is

reorganized. When it happens, the transaction will transit from
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the Executed state to the Reversed state and be put back to the

transaction pool, awaiting execution. Similar to the Pending state,

transactions in the Reversed state can also be dropped.6

While in theory executed transactions can be reversed, in prac-

tice, a transaction whose execution has been logged by a block with

a sufficient number of confirmations can be considered finalized, i.e.,

the transaction will transit from the Executed state to the Finalized

state. The number of confirmations required varies according to the

security requirements of the DApp [45]. To avoid problems caused

by reversed transactions, one common practice adopted by DApp

developers is to use the result of a transaction at the off-chain layer

only after the transaction transits to the Finalized state [18].

To estimate the frequency of transaction state transitions, we

collect Ethereum traffic data from Etherscan [13] and an Ethereum

full node maintained by us. We find that the average number of

transactions submitted to Ethereum per second is 32.5. The average

number of transactions executed by Ethereum per second (TPS) is

16.4, which indicates that around half of the transactions cannot

be immediately executed after submission. We also monitor the

Ethereum mainnet for over 4 months and observe that chain reor-

ganization happens every 24.43 blocks, i.e., every 11.06 minutes.7

The average number of transactions reversed per hour due to such

chain reorganizations is 16.69. These statistics show that the drop

and reverse rates of transactions on Ethereum are non-negligible,

and it is necessary for DApps to consider the non-deterministic

transaction execution to avoid on-chain-off-chain synchronization

bugs.

4.2 On-Chain-Off-Chain Synchronization Bugs

In Section 3, we have presented an on-chain-off-chain synchroniza-

tion bug in a DApp named Giveth. On-chain-off-chain synchro-

nization bugs occur when DApps fail to maintain the consistency

between their on-chain states and off-chain states. In the Giveth

bug, developers do not consider the situation in which a Pend-

ing transaction is Dropped by the blockchain, and inconsistencies

are thus induced. Such inconsistencies can result in erroneous off-

chain states, which might mislead users. Further operations based

on these erroneous states can cause unexpected changes on the

blockchain or waste transaction fees.

Since DApps are a new kind of software applications, the lack

of understanding of state transitions in the transaction lifecycle

may make it difficult for developers to assure proper on-chain-

off-chain synchronization. We observe that developers often as-

sume that the transactions submitted by their DApp would be

Executed and eventually Finalized on the blockchain while ignor-

ing the situations where (1) a Pending or Reversed transaction is

dropped silently by the blockchain, or (2) an Executed transaction

is reversed due to chain reorganization. As a result, on-chain-off-

chain-synchronization bugs often arise. In this paper, we focus on

studying on-chain-off-chain synchronization bugs triggered in the

6We distinguish the Pending and Reversed states because they are separately han-
dled by the Ethereum official library, web3.js [49] under different JavaScript events:
transactionHash and changed.
7The frequency of chain reorganizations is calculated by the total number of canonical
blocks mined (or the total time elapsed) divided by the total number of invalidated
blocks within the period that we monitor the Ethereum mainnet.

two situations. We refer to them as Type-I and Type-II bugs, respec-

tively. Fig. 3 illustrates how these two types of bugs could occur

with our transaction lifecycle model. We will introduce them in

detail below.

4.2.1 Type-I Bugs. As Fig. 3(a) shows, Type-I bugs occur because

the off-chain state is prematurely updated when the transaction is

in Pending state, but in fact, the transaction is later dropped. The

bug in Giveth as shown in Listing 1 is a Type-I bug. Giveth imme-

diately updates its off-chain state (lines 4ś13) when the donation

withdrawal transaction is submitted to the blockchain. It does not

further check the state of the transaction and does not adequately

deal with potential state changes.

4.2.2 Type-II Bugs. As Fig. 3(b) shows, Type-II bugs occur because

the off-chain state is updated after the transaction transits to the

Executed state, but the executed transaction is later reversed due to

chain reorganization. Issue #8260 of Augur [31], a popular DApp for

predictionmarkets [30], is a Type-II bug. Augur updates its off-chain

state when the transactions that create markets are executed but

does not revert the off-chain state when the executed transactions

are reversed. Consequently, the front-end client of Augur would

display markets that do not exist on the blockchain. Any further

operations on these markets will result in łMarket Not Foundž

errors.

These two types of bugs are not well studied in the literature.

Existing techniques either focused on testing smart contracts [22,

25, 32, 39, 54], which are only concerned with the on-chain layer of

DApps, or do not fully consider the entire lifecycle of transactions

when testing DApps [8]. Take the popular DApp testing environ-

ment Ganache [8] as an example. When using Ganache, DApp

developers are encouraged to configure the testing blockchain to

execute transactions immediately [23], while the possible state tran-

sitions from Pending to Dropped or from Executed to Reversed are

ignored [24]. As a result, Type-I and Type-II bugs can easily slip into

real-world DApps. This motivates us to propose ÐArcher , a testing

framework to effectively detect the two types of on-chain-off-chain

synchronization bugs in DApps.

4.3 The ÐArcher Testing Framework

We can see from the above discussion that we need to systematically

emulate transaction state transitions to trigger on-chain-off-chain

synchronization bugs. Guided by our transaction lifecycle model,

ÐArcher controls the execution of each transaction in its testing

environment to drive the transaction to traverse possible states.

However, triggering bugs alone is not sufficient. Effective testing

also requires oracles to judge the existence of bugs. In the follow-

ing, we present our design of test oracles in ÐArcher and then

explain how to leverage the oracles to detect on-chain-off-chain

synchronization bugs during testing.

4.3.1 Test Oracles. It is challenging to design oracles for detecting

on-chain-off-chain synchronization bugs. Although the on-chain

and off-chain states in DApps need to be consistent, they are not

necessarily identical. Off-chain states are often maintained as a

simplified version of the corresponding on-chain states to facilitate

front-end user actions. For instance, in our motivating example,
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Created Pending Executed Finalized

Dropped Off-chain State Update

(a) Type-I

Created Pending Executed Finalized

Dropped Reversed

Off-chain State Update

(b) Type-II

Figure 3: Transaction Lifecycles for the Two Types of On-Chain-Off-Chain Synchronization Bugs. The solid arrows depict the

actual state transitions, and the dashed arrows depict the transitions assumed by DApps. For Type-I bugs, the off-chain state is

prematurely updated when the transaction is Pending. For Type-II bugs, the off-chain state is updated when the transaction is

Executed, but the updated state is not reverted when the transaction is reversed.

Giveth’s cache server processes on-chain donations and stores pro-

cessed data instead of making an exact copy of the on-chain state.

The processed data contains additional information, such as the

index of donations, to facilitate user queries. However, such infor-

mation is not saved on blockchain to reduce the cost of interacting

with smart contracts. In addition, updates of the off-chain state

depend on both the changes to the on-chain state and the program

logic of the off-chain layer. Therefore, it is hard to specify the map-

ping between the on-chain and off-chain states as well as directly

check whether the off-chain state is consistent with the on-chain

state. To address the challenge, we design oracles that check on-

chain-off-chain state consistency by only comparing the off-chain

states of the DApp when the concerned transaction is at different

lifecycle stages. In this way, the mapping between on-chain and

off-chain states is not required. In the following, we present the

test oracles.

Test oracle for Type-I bugs. For Type-I bugs, we observe that,

when a transaction 𝑡 is added to the transaction pool (i.e., transits

from the Created state to the Pending state), the DApp should not

prematurely update the off-chain state as if 𝑡 is executed and final-

ized. Since DApps are not informed when transactions transit from

the Pending state to the Dropped state, any premature updates of

the off-chain state are likely to remain when the transactions are

dropped on the blockchain. Assertion 1 helps detect such bugs.

Assertion 1. For each transaction 𝑡 , 𝜎 (𝑡,Created) ≠ 𝜎 (𝑡, Finalized)

implies 𝜎 (𝑡, Pending) ≠ 𝜎 (𝑡, Finalized).

In the above formulation, 𝜎 (𝑡, 𝑠) denotes the off-chain state of

the DApp under test when the transaction 𝑡 is at the transaction

lifecycle state 𝑠 . The clause 𝜎 (𝑡,Created) ≠ 𝜎 (𝑡, Finalized) means

that the transaction 𝑡 results in an update to the off-chain state. The

clause 𝜎 (𝑡, Pending) ≠ 𝜎 (𝑡, Finalized) specifies that the off-chain

state should not be updated as if the transaction has been Finalized

when the transaction has been just sent to the transaction pool.

Note that this assertion allows DApps to make changes to the off-

chain state when the concerned transaction is Pending, but the

changes should not indicate that the transaction has been Finalized.

Violations of Assertion 1 indicate the existence of Type-I bugs.

Test oracle for Type-II bugs. When a transaction is executed

(i.e., transits from the Pending state to the Executed state), some

DApps may update their off-chain states. Type-II bugs occur when

the executed transaction is reversed due to chain reorganization,

but the updated off-chain state is not reverted accordingly. ÐArcher

leverages Assertion 2 to check for Type-II bugs.

Assertion 2. For each transaction 𝑡 , 𝜎 (𝑡, Pending) = 𝜎 (𝑡, Reversed).

Since reversed transactions are put back to the transaction pool,

the off-chain state of the DApp when transaction 𝑡 is at the Pending

state should be the same as that when 𝑡 is at the Reversed state.

Violations of Assertion 2 indicate the existence of Type-II bugs.

4.3.2 Lifecycle Emulation & Assertion Checking. As discussed ear-

lier, in existing blockchain testing environments such as Ganache [8],

transactions are directly Executed and Finalized once submitted

to the blockchain. These transactions are never dropped or re-

versed, and thus Type-I and Type-II bugs cannot be triggered. To

address the limitation, ÐArcher implements a blockchain environ-

ment that can control the state of transactions. Instead of executing

a transaction immediately after it is submitted to the blockchain,

ÐArcher drives the transaction to traverse lifecycle states in the

following order: Created → Pending → Executed → Reversed →

Executed → Finalized. Such a traversal allows our proposed ora-

cles to be evaluated for each transaction to detect the two types of

on-chain-off-chain synchronization bugs. Specifically, when there

is a state transition, ÐArcher fetches and stores the off-chain state

of the DApp under testing. After the state traversal terminates, the

fetched off-chain state is checked against the Assertions 1 and 2. If

there is any assertion violation, ÐArcher will report a bug. More

details of bug detection will be further introduced in Section 5.

5 IMPLEMENTATION

Fig. 4 shows an overview of ÐArcher . Given a DApp, the front-

end explorer fires UI events to exercise the DApp to explore the

functionalities that involve sending transactions. Once a transaction

is sent, ÐArcher leverages a controlled blockchain to execute it and

traverse its lifecycle states in the order mentioned in Section 4.3.2.

During the state traversal process, ÐArcher keeps fetching the off-

chain state of the DApp, whenever there is a state change. The state

consistency analyzer then checks such collected off-chain states to

detect bugs.

We have open-sourced ÐArcher on GitHub8. In the following,

we present more details on how ÐArcher is implemented.

8https://github.com/Troublor/darcher

558

https://github.com/Troublor/darcher


ÐArcher : Detecting On-Chain-Off-Chain Synchronization Bugs in Decentralized Applications ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

DApp

State Consistency
Analyzer

 Test 
Report

Send
Transaction

Front-End Explorer

Controlled Blockchain

Traverse
Lifecycle

Fetch Off-Chain State
After Each State Transition

Fire UI Events

Figure 4: Overview and Workflow of ÐArcher

5.1 The Front-End Explorer

As mentioned earlier, the front-end explorer fires UI events to exer-

cise DApps. In practice, developers can use any applicable tool or

manually write test cases for purpose. In the current implementa-

tion of ÐArcher , we choose to integrate a popular web testing tool,

Crawljax [34], to generate GUI events to test DApps, which are

often web-based applications. Crawljax infers a state-flow graph

when testing a web application. GUI events are fired at the states

that can transit to unvisited states. The state-flow graph is updated

whenever new states are discovered during testing. The exploration

will stop when all of the states in the graph have been visited. Such

model-based testing can help exercise DApps to interact with the

blockchain.

5.2 The Controlled Blockchain

We implement a controlled blockchain inÐArcher based onGeth [12],

a popular Ethereum client. When the DApp under test submits a

transaction to our controlled blockchain, ÐArcher will drive the

transaction to traverse its lifecycle states according to the order

mentioned in Section 4.3.2.

5.3 The State Consistency Analyzer

Asmentioned in the overview, during testing,ÐArcher keeps collect-

ing the off-chain state data for bug detection. Different DApps may

maintain the off-chain states in different ways, e.g., using various

databases such as MySQL and MongoDB, or browser storage such

as IndexedDB and localStorage. It is hard to design a tool to auto-

matically identify runtime values representing the off-chain states

for all DApps. As a workaround, we build our off-chain state fetcher

for different data storage, including databases, browser storage, and

HTML elements. Users of our tool only need to configure a few

rules to specify the variables and fields that constitute the off-chain

state of their DApps (e.g., specifying column names in databases or

regular expressions to include or exclude table columns).

To minimize the runtime overhead, ÐArcher does not instrument

DApps. Since it is hard to determine when a DApp finishes updating

its off-chain state at runtime, ÐArcher would wait for a period of

time when a transaction’s lifecycle state changes before fetching

the off-chain state. The waiting time is configurable in ÐArcher .

After the state traversal process completes, ÐArcher checks the

fetched off-chain states to identify the two types of on-chain-off-

chain synchronization bugs according to the two oracles proposed

in Section 4.3.1.

6 EVALUATION

We evaluate ÐArcher on real-world web-based DApps. Specifically,

we investigate the following research questions:

• RQ1 (Bug Detection Capability): Can ÐArcher effectively de-

tect on-chain-off-chain synchronization bugs in real DApps?

• RQ2 (Efficacy of Our Oracles): How effective are our pro-

posed oracles? Can on-chain-off-chain synchronization bugs be

detected using existing oracles?

• RQ3 (Usefulness): Can ÐArcher detect on-chain-off-chain syn-

chronization bugs that are useful to developers?

6.1 Subjects

To collect subjects for evaluation, we search for Ethereum DApps

on GitHub using the keyword ethereumwith constraints stars:>=100,

language:JavaScript or language:TypeScript. The first constraint is to

ensure the popularity of the selected subjects. The second constraint

is to help find web-based DApps. The search returns 254 projects.

We manually check each project to exclude those that are not web

applications or those that are libraries, blockchain clients, block

explorers, transaction trackers, frameworks, operating systems, and

so on. Projects that are tagged as deprecated or archived are also

excluded because they are not actively maintained. Furthermore,

we exclude those that are claimed to be examples, tutorials, or

starters, as we are interested in real DApps rather than toy examples.

After this filtering process, 21 DApps remain. Finally, ÐArcher is a

dynamic testing framework, which requires executing transactions

of smart contracts on a local controlled blockchain. Although

a number of DApps provide the source code of smart contracts

and web applications, many of them lack instructions to deploy

their smart contracts on a local blockchain. 9 They expect users

to deploy the open-source web applications on Ethereum public

testnets or mainnet, where contracts have been well-deployed. 10

Therefore, we exclude those projects that we fail to deploy on our

local blockchain by following the provided instructions. After the

above filtering, we collect a total of 11 popular real-world DApps

for experiments. This is in line with the finding in an empirical

study made by Wu et al. [58] that few DApps are fully open-source.

Table 1 provides the information of these subjects. The selected

subjects differ in scale. The smallest DApp has less than 1,000 lines

of code, while the largest DApp has more than 30,000 lines of code.

The purposes of the subjects are also quite diversified.

6.2 Experiment Design

In this subsection, we explain how we set up our experiments,

derive off-chain states, and establish the ground truth to validate

9Deploying contracts not only requires sending contract creation transactions but also
involves other specific transaction to initialize contract states, e.g., linking to other
existing contracts, setting configurations, etc.
10As an example, the web interface of a famous decentralized exchange DApp, Uniswap,
only works on testnets and will not work on other blockchains, as stated by develop-
ers [53].
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bug detection results.We also introduce the baselines, against which

ÐArcher will be compared.

Experiment Setup. We deploy the subjects locally on our con-

trolled blockchain. We set the ÐArcher’s waiting time for DApps

to update their off-chain states to be 15 seconds, which is aligned

with the average block interval time on Ethereum mainnet [13].

We run ÐArcher on each DApp for one hour. We observe that this

is sufficient for ÐArcher to reach the saturation of test coverage

during experiments. We repeat the testing process ten times for

each DApp to mitigate the randomness of Cralwjax.

Off-Chain State Derivation. One challenge in the experiments

is to identify the data fields that compose off-chain states. As we

have discussed in Section 5.3, different DApps may maintain off-

chain states in different ways. Essentially, ÐArcher requires devel-

opers to manually specify which data fields or variables in the DApp

constitute the off-chain state. However, such specification is unavail-

able for our evaluation. As aworkaround, wemanually explore each

DApp and derive the off-chain state by including those data fields

that are updated when transactions are directly executed (i.e., going

through the states Created → Pending → Executed → Finalized).

The intuition behind is that we assume developers have tested their

DApp to assure that the off-chain state is properly updated when

transactions undergo such łnormalž executions. Note that ÐArcher

does not integrate this off-chain state derivation mechanism in that

the aforementioned assumption does not necessarily hold for all

DApps.

Result Validation.To evaluate the precision and recall ofÐArcher

for each DApp, we manually reproduce all transactions generated

during testing and make them go through the lifecycle to identify

potential inconsistencies between the on-chain and off-chain states.

This process is independently performed by two authors. The re-

sults are cross-checked for consistency. It is worth mentioning that

the recall metric we used here is for evaluating ÐArcher’s capa-

bility of catching Type-I and Type-II bugs once they arise during

the processing of transactions. We do not aim to evaluate how

many of all possible on-chain-off-chain synchronization bugs can

be detected by ÐArcher since it is hard to obtain the ground truth.

Not only that, the Crawljax front-end explorer may not be able to

trigger all possible transactions during testing.

Baselines. Since there is no prior work for detecting on-chain-

off-chain synchronization bugs in DApps, we construct two baseline

methods by replacing oracles used by ÐArcher with the ones used

for detecting smart contract vulnerabilities [25] and web appli-

cation faults [4]. Specifically, Baseline-I would report bugs if the

execution of a transaction violates the assertions defined by Con-

tractFuzzer [25]. Baseline-II would report bugs if runtime errors

occur in the JavaScript console during the testing process [4]. Ex-

cept for the differences in oracles, the two baseline methods use

exactly the same tests for each DApp and traverse the lifecycle of

each transaction in the same way as ÐArcher . We do not compare

ÐArcher with existing blockchain testing environments such as

Ganache [8], since none of them is able to emulate the lifecycle

of transactions, and thus neither Type-I nor Type-II bugs can be

triggered by them.

Table 1: The DApps Used in Our Experiments

DApp Stars LOC (JS) Commits Purpose

AgroChain [1] 106 291 40 Agricultural Supply Chain

Augur [30] 264 68,972 40,971 Prediction Markets

DemocracyEarth [16] 1,305 29,149 3,394 Governance for DAOs

ETH Hot Wallet [40] 197 7,295 284 Wallet

Ethereum Voting Dapp [37] 348 238 31 Voting

Giveth [20] 257 30,708 3,131 Charitable Donation

Heiswap [50] 100 1,687 87 Anonymous Transfer

MetaMask [15] 4,091 81,898 11,072 Wallet

Multisender [46] 165 1,421 33 One-to-Many Transfer

PublicVotes [42] 149 628 34 Voting

TodoList Dapp [2] 127 1,076 28 Todo List

6.3 RQ1: Bug Detection Capability

Table 2 presents the results of ÐArcher and baselines, including the

overall test coverage, precision, recall, and accuracy. Since ÐArcher

aims to test the correctness of synchronization between the on-

chain and off-chain layers in DApps during the transaction execu-

tion process, we measure the test coverage in terms of how well

transaction submission API call sites are covered during testing11.

Such API call sites are essentially the łstarting pointž of on-chain-

off-chain synchronization. Their coverage could indicate the diver-

sity of the tests generated by the Front-End Explorer. Note that since

some functionalities relying on Ethereumpublic blockchain services

(e.g., Uniswap [52]) are unavailable on the controlled blockchain of

ÐArcher , API call sites for such functionalities are not considered

in our coverage measurement. In the following, we will discuss the

experiment results in detail.

Coverage. ÐArcher triggers a total of 3,134 transactions and

covers 70% of the transaction submission API call sites when testing

the 11 DApps. It achieves an overall accuracy of 89.4% in deciding

whether a transaction handling process contains bugs or not.

False Positives. Altogether, there are 385 transactions violating

Assertion 1 and 1,862 transactions violating Assertion 2. There is

no transaction violating both assertions. Among these transactions,

there are 16 exhibiting Type-I bugs, which are found to be false

positives (FPs). There are no false positives for those detected to

exhibit Type-II bugs. We find that all of the 16 FPs are related to the

DApp Giveth. They arise from the unexpected delays in updating

the off-chain states in Giveth’s cache server. For instance, when a

transaction reaches the Pending state, Giveth makes a partial update

to the off-chain state, with a flag indicating that the transaction is

awaiting execution. The flag should be cleared when the transaction

is Finalized. However, it is not cleared within 15 seconds, so that

ÐArcher fetches the same off-chain state as the one fetched when

the transaction is Pending. In this case, ÐArcher reports a violation

of Assertion 1, but in fact, it is a false positive. If ÐArcher waits for a

longer period before fetching the off-chain state, the violation will

not be reported. Despite the FPs, ÐArcher still achieves an overall

precision of 99.3% in detecting on-chain-off-chain synchronization

bugs in the collected DApps.

False Negatives. There are 52 and 264 transactions exhibiting

Type-I and Type-II bugs, respectively, which are missed by ÐArcher .

11We are able to measure the coverage of transaction submission API call sites be-
cause DApps use designated APIs [6, 47, 48] provided by the official libraries (e.g.,
web3.js [49]) of Ethereum to interact with the blockchain.
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After investigating the corresponding transactions, we find two

major reasons for the false negatives (FNs). First, ÐArcher may

fetch the off-chain state before it is inappropriately updated, in the

same way as mentioned in the previous Giveth example. Second,

transactions may depend on each other. An on-chain-off-chain

synchronization bug may occur if a transaction 𝑣 is executed based

on the interim result of another transaction 𝑢, while 𝑢 is reversed

and dropped. FN occurs if the DApp does not update the off-chain

state for transaction 𝑣 (neither Assertion 1 or 2 will be violated if

the off-chain state is unchanged). Despite such cases, the recall of

ÐArcher is still quite high and reaches 87.6% in our experiments.

Answer to RQ1: ÐArcher can effectively detect on-chain-off-

chain synchronization bugs inDAppswith high precision (99.3%),

recall (87.6%), and accuracy (89.4%).

6.4 RQ2: Efficacy of Our Oracles

We answer RQ2 by comparing ÐArcher with the two baseline meth-

ods that employ existing oracles. The results of baselines are also

presented in Table 2.

As we can see from the table, Baseline-I only generates warn-

ings for seven transactions. After inspecting the seven transactions

whose execution violates vulnerability assertions, we find that the

underlying smart contract contains the exception disorder vulnera-

bility according to the bug definition by Jiang et al. [25]. However,

these seven warnings are all FPs in terms of on-chain-off-chain syn-

chronization bugs. Smart contract vulnerability oracles cannot de-

tect any on-chain-off-chain synchronization bugs in the experiment.

This is because the detection of on-chain-off-chain synchronization

bugs requires the examination of both on-chain and off-chain layers

of a DApp, whereas the oracles for smart contract vulnerabilities

examine only the on-chain layer.

Baseline-II is able to reveal some on-chain-off-chain synchro-

nization bugs. For example, a bug [31] in Augur results in a run-

time error with message łUncaught (in promise) Error: execution

revertedž, when a transaction is reversed. However, the runtime

error oracle is not effective compared to our proposed oracles. Our

experiments show that the overall precision, recall, and accuracy

of Baseline-II are only 56.9%, 10.1% and 20.7%, respectively, which

are significantly worse than ÐArcher . In addition, the runtime er-

ror messages generated may not provide useful information about

the root causes of on-chain-off-chain synchronization bugs. For

instance, the message łError: PollingBlockTracker - encountered

error fetching block:ž generated in the testing of MetaMask gives

little hint of the occurrence of a synchronization bug.

Answer to RQ2: Our proposed oracles significantly outper-

form the existing ones in terms of detecting on-chain-off-chain

synchronization bugs.

6.5 RQ3: Usefulness

We answer RQ3 by reporting bugs detected by ÐArcher to the de-

velopers and communicating with them. Although ÐArcher reports

warnings for thousands of transactions in the experiments, lots

of them are repeated explorations of the same functionalities in

DApps. To avoid overwhelming developers, we group the warnings

with the same root cause into a single issue to report to the devel-

opers. Table. 3 lists the IDs of the GitHub issues, in which we report

on-chain-off-chain synchronization bugs to the DApp developers.

In total, we have reported 15 bugs, of which six have been con-

firmed by developers, and three have been fixed. Developers provide

positive feedback on our reported bugs. For example, developers of

Giveth respond łSyncing two backend (cache server and blockchain)

is a delicate and complex job, and we hope it is solved soonž, and the

bugs in Giveth were fixed one and a half month after we reported

them. The comment indicates that the reported on-chain-off-chain

synchronization bugs are real, and the on-chain/off-chain synchro-

nization is complex. Detection of the bugs is useful to developers

in improving the quality of DApps.

Due to the complexity of on-chain/off-chain synchronization,

developers are likely to improperly handle scenarios where trans-

actions are dropped or reversed. For instance, the developers of

Giveth are aware of the possibility that transactions can be re-

versed after execution, and Giveth is designed only to update the

off-chain state when transactions reach the Finalized state. How-

ever, as discussed in Section 3, the handling of some transactions

is still flawed, and the off-chain state is updated prematurely with-

out waiting for the transaction to be finalized. Another example is

Augur, which maintains a rollback table that stores the metadata

used to revert the off-chain state when a transaction is reversed on

the blockchain. However, the rollback table is cleared unexpectedly

when the page is refreshed after the transaction is executed. In such

cases, the off-chain state does not get reverted when a transaction

is reversed, causing inconsistencies between off-chain and on-chain

states. ÐArcher has been able to catch the above on-chain-off-chain

synchronization bugs, and they have been confirmed and fixed by

developers. This demonstrates that on-chain-off-chain synchroniza-

tion bugs could still occur in those DApps whose developers have

already considered the non-determinism of transaction execution,

and ÐArcher is able to help developers catch the hidden bugs.

Answer to RQ3: Among 15 bugs reported to developers, six

have been confirmed and three have been fixed. Responses from

developers show that ÐArcher is useful in detecting on-chain-

off-chain synchronization bugs.

7 DISCUSSIONS

7.1 Synchronization Strategies

In the evaluation, we observe that some DApps have considered the

possibility that pending transactions can be silently dropped and

that executed transactions can be reversed. However, on-chain-off-

chain synchronization bugs are still detected in these DApps. This

indicates that on-chain-off-chain synchronization is non-trivial and

error-prone, highlighting the detection capability of ÐArcher .

To better understand how developers of DApps synchronize

on-chain and off-chain states, we further investigate the synchro-

nization strategies adopted in the 11 DApps used in our evaluation.

We observe three common strategies as follows.
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Table 2: Experiment Results of ÐArcher and Baselines

DApp

API

Call Site

Coverage

Total

Txs.

ÐArcher Baseline-I Baseline-II

TP FP FN
Pre. Rec. Acc.

Contract Vulnerability Oracle Runtime Error Oracle

I II I II I II TP FP FN Pre. Rec. Acc. TP FP FN Pre. Rec. Acc.

AgroChain 75.0% 417 60 160 0 0 40 0 100.0% 84.6% 90.4% 0 0 260 - 0.0% 37.6% 0 0 260 - 0.0% 37.6%

Augur 66.7% 164 0 24 0 0 0 25 100.0% 49.0% 84.8% 0 7 49 0.0% 0.0% 65.9% 49 115 0 29.9% 100.0% 29.9%

DemocracyEarth 100.0% 78 0 78 0 0 0 0 100.0% 100.0% 100.0% 0 0 78 - 0.0% 0.0% 0 0 78 - 0.0% 0.0%

ETH Hot Wallet 100.0% 140 140 0 0 0 0 0 100.0% 100.0% 100.0% 0 0 140 - 0.0% 0.0% 58 0 82 100.0% 41.4% 41.4%

Ethereum Voting Dapp 100.0% 376 0 140 0 0 0 236 100.0% 37.2% 37.2% 0 0 376 - 0.0% 0.0% 0 0 376 - 0.0% 0.0%

Giveth 63.6% 353 27 0 16 0 11 0 62.8% 71.1% 92.4% 0 0 38 - 0.0% 89.2% 0 80 38 0.0% 0.0% 66.6%

Heiswap 100.0% 323 0 322 0 0 0 1 100.0% 99.7% 99.7% 0 0 323 - 0.0% 0.0% 16 0 307 100.0% 5.0% 5.0%

MetaMask 100.0% 225 0 225 0 0 0 0 100.0% 100.0% 100.0% 0 0 225 - 0.0% 0.0% 1 0 224 100.0% 0.4% 0.4%

Multisender 100.0% 334 0 332 0 0 0 2 100.0% 99.4% 99.4% 0 0 334 - 0.0% 0.0% 0 0 334 - 0.0% 0.0%

PublicVotes 100.0% 289 142 146 0 0 1 0 100.0% 99.7% 99.7% 0 0 289 - 0.0% 0.0% 133 0 156 100.0% 46.0% 46.0%

TodoList Dapp 100.0% 435 0 435 0 0 0 0 100.0% 100.0% 100.0% 0 0 435 - 0.0% 0.0% 0 0 435 - 0.0% 0.0%

Total/Overall 70.0% 3,134 369 1,862 16 0 52 264 99.3% 87.6% 89.4% 0 7 2,547 0.0% 0.0% 18.5% 257 195 2,290 56.9% 10.1% 20.7%

Average 77.3% 284.9 33.5 169.3 1.5 0 4.7 24.0 96.6% 85.5% 91.2% 0.0 0.6 231.5 0.0% 0.0% 17.5% 23.4 17.7 208.2 71.7% 17.5% 20.6%

Txs. is short for transactions. We report the number of TPs, FPs and FNs for Type-I and Type-II bugs separately in the detection results of ÐArcher . We use Pre., Rec., and Acc. as abbreviations for

precision, recall, and accuracy, respectively. Precision is marked as ł-ž when the tool reports no bugs. The average results are arithmetic means of the results for all subjects.

Table 3: Real Bugs Detected by ÐArcher

DApp Issues DApp Issues

AgroChain #7, #8 Heiswap #29

Augur #8260f MetaMask #10120c

DemocracyEarth #561 Multisender #34c

ETH-Hot-Wallet #41 PublicVotes #11, #12

Ethereum Voting Dapp #28 TodoList Dapp #5?

Giveth #1103f, #1605f, #1792c

f The reported bugs have been confirmed and fixed.
c The reported bugs have been confirmed.
? The developers have asked for Pull Requests.

Other issues have not received responses from developers.

Periodic Polling. The most straightforward way to synchronize

on-chain and off-chain states is to poll the on-chain state periodi-

cally. For instance, DemocracyEarth [16] registers a daemon task

that periodically checks the on-chain state and updates the off-chain

state accordingly. This strategy effectively keeps the off-chain state

consistent with the on-chain state during the lifecycle of trans-

actions. Nevertheless, periodic polling is inefficient if the DApp

is complicated. If redundant synchronization work is performed

repeatedly, a lot of communication and computation overheads will

result.

Passive Waiting. The passive waiting strategy copes with the

non-determinism of transaction execution by updating the off-chain

state only when a transaction reaches the Finalized state in its life-

cycle. That is to say, as long as the non-determinism still exists,

i.e., transactions are not yet finalized, the DApp does not update

its off-chain state. For instance, Giveth [20] adopts this strategy by

counting the number of confirmations for each transaction after

it is executed. Only when a transaction has enough confirmations

will Giveth update its off-chain state in the centralized cache server.

This strategy could save a lot of communication and computation

overheads compared to the periodic polling strategy since the DApp

only needs to track the transactions that are not yet finalized. How-

ever, it could induce an inevitable delay in the DApp, influencing

user experiences because after the transaction is executed, users

must wait until there are enough confirmations.

Aggressive Updating. The aggressive updating strategy is an-

other choice for DApp developers. This strategy is intended to keep

the off-chain state closely synchronous with the on-chain state,

which means the DApp updates its off-chain state when transac-

tions are executed, and reverts the off-chain state when transactions

are reversed. For instance, Augur adopts this strategy in its imple-

mentation. When a transaction is sent to the blockchain, that is, in

Pending state, the off-chain state is not updated. The update only

takes place when the transaction is executed. If the transaction

is reversed due to blockchain reorganization, Augur will also re-

vert its off-chain state accordingly. This strategy offers better user

experience than the passive waiting strategy. Users can see the

updates of the off-chain state immediately when their transactions

are executed or reversed. However, it is more error-prone to revert

the off-chain state, which might involve many data fields, when

transactions are reversed on the blockchain.

7.2 Limitations and Future Work

Our work is subject to two limitations. First, precise identifica-

tion of the off-chain states is important to the test effectiveness of

ÐArcher . In our experiments, we assume that the off-chain states

are appropriately updated when the transactions are completed

in a straightforward manner. This may not always hold. Second,

ÐArcher assumes that each update of an off-chain state, if it indeed

happens, would be completed within a fixed time period, which

is to be manually specified. If the period is set to be too large, the

time efficiency of ÐArcher is compromised. If the period is set to

be too small, ÐArcher may miss the detection of some on-chain-

off-chain synchronization bugs. Furthermore, the period can vary

across DApps. A possible solution to these two limitations is to

analyze the source code of DApps to determine what comprises the

off-chain states and when they will be updated so that the efficiency

and effectiveness of each transaction’s analysis could be improved.

However, the dynamic and reflective nature of JavaScript [43] im-

poses other challenges to perform a sound and complete analysis

of DApps. As such, we leave these two limitations to be addressed

in our future work.

Furthermore, as discussed in Section 6.3, it could be the case

that the consequence of on-chain-off-chain synchronization bugs

562



ÐArcher : Detecting On-Chain-Off-Chain Synchronization Bugs in Decentralized Applications ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

is not reflected in DApps’ off-chain states, for instance, sending a

transaction dependent on the interim result of another transaction,

which gets reversed or dropped. Future work can be made to de-

tect the on-chain-off-chain synchronization bugs exhibited in such

scenarios.

7.3 Threats to Validity

The limited number of DApp subjects poses an external threat to

the validity of our evaluation results. We mitigate this threat by

selecting popular real-world DApps of different sizes and purposes

from GitHub to improve their representativeness. More subjects are

needed to address this threat in future research fully. Leveraging

Crawljax to exercise DApps induces another external threat in that

Crawljax is a randomized tool and may not trigger all possible trans-

actions. We mitigate this threat by repeating the experiments ten

times in order to increase the diversity of explored functionalities.

Threats to internal validity may arise from the way we interpret

the experiment results. The specification of off-chain states for each

DApp poses a threat, which we mitigate by mechanically deriv-

ing off-chain states with the assumption discussed in Section 6.2.

During the reproduction of transactions, we confirm that our as-

sumption holds for all DApp subjects. We also report our detected

bugs to the DApp developers and ask for their feedback to confirm

the effectiveness and usefulness of ÐArcher .

8 RELATED WORK

This section briefly reviews the existing work related to the problem

that ÐArcher aims to address.

8.1 DApp Development and Testing

In 2017, Porru et al. [41] introduced the concept of blockchain-

oriented software engineering and pointed out the challenges and

research directions on the development and testing. Since then,

DApps, as a kind of blockchain-oriented software, started to attract

attention from software engineering researchers. Wessling et al. [55,

56] discussed the design choices of the architecture of a software

that involves blockchain, showing the benefits and drawbacks of

DApps. Wu et al. [57, 58] conducted empirical studies on Ethereum-

based DApps to show the popularity, growth, development practice,

cost, and the open-source status quo. They pointed out the research

direction in the synchronization between the on-chain and off-chain

layers of a DApp, but no further study has been conducted. Wu et

al. [59] proposed a framework, Kaya, for testing DApps. However,

their framework only provides tools to facilitate themanual creation

and execution of test cases for DApp. Unlike our work, Kaya does

not target any bugs specific to DApps and does not propose oracles

to help automatically reveal bugs in DApps.

8.2 Smart Contract Testing

Lots of studies have been conducted over the past several years to

analyze and test smart contracts. Various approaches have been

proposed to detect vulnerabilities with symbolic execution [32, 35],

fuzzing [25, 26, 28, 39, 60], static analysis [5, 14, 22, 36, 51, 54, 61],

mutation testing [7], or machine learning [29] techniques. Multiple

empirical studies have also been conducted to review and verify the

effectiveness and efficiency of smart contract vulnerability analysis

tools [9, 19]. However, these studies only focus on testing the on-

chain layer of a DApp, that is, smart contracts. As shown in our

evaluation, in which we adopt contract vulnerability oracles from

ContructFuzzer [25], testing smart contracts only and neglecting

the testing of the interaction between on-chain and off-chain layers

cannot ensure the correctness of a DApp. Our work, instead, takes

the interaction between the on-chain and off-chain layers into

consideration and can detect bugs during the synchronization of

the two layers.

8.3 Test Case Generation for Web Applications

SinceÐArcher targets web-based DApps, test case generation inweb

applications is relevant to our work. Mesbah et al. [34] proposed

Crawljax, which can derive a state flow graph for web applica-

tions and generate tests to traverse the graph. Since Crawljax is

well-maintained and capable of automatically generating test cases

with good coverage to explore web applications, we integrate it

into ÐArcher to trigger the interaction with smart contracts for

testing DApps. Other test generation tools, such as SubWeb [3]

and DIG [4], are usually built based on Crawljax, with the aim to

further increase the coverage of generated tests. Since these tools

require web applications to have page navigational models, which

are not available in our DApp subjects, we did not integrate them

into our framework. Nevertheless, the DApp Front-End Explorer

component of ÐArcher is loosely coupled with other components. It

is convenient to migrate to other web testing tools to explore func-

tionalities of DApps and detect on-chain-off-chain synchronization

bugs based on our proposed oracles.

9 CONCLUSION

In this paper, we study the development challenges of DApps caused

by the non-deterministic transaction execution on the blockchain

and the on-chain-off-chain synchronization bugs thus induced. We

propose ÐArcher , an automated testing framework to detect two

common types of such bugs in DApps. Our experiments on 11

real-world DApps show that ÐArcher is effective in detecting on-

chain-off-chain synchronization bugs and significantly outperforms

the baseline methods in terms of precision, recall, and accuracy.

Feedbacks from real-world DApp developers also confirm the effec-

tiveness and usefulness of ÐArcher .
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